Reptile Nutrition 101: Veggies & Insectivores Delight

La'Toya Latney, DVM, Dip. ECZM (ZHM), DABVP (Reptile & Amphibian), CertAqV

- I. Introduction
- II. Nutrition guidelines
 - a. National Research Council (NRC)
 - b. Herptile nutrition extrapolated from other species
 - i. Minimums for rats most commonly used
 - ii. Nutritional Advisory Group
- III. Nutritional strategies per taxonomic group
 - a. Diet breakdown for chelonians
 - i. Aquatic turtles
 - 1. Aquatic veggies
 - 2. Feeder fish
 - 3. Pellets
 - 4. Insects
 - ii. Box turtles
 - 1. Weeds, garden veggies
 - 2. Slugs, earthworms
 - 3. Berries
 - 4. Flowers
 - iii. Tortoises
 - 1. Most consume 100% plants only
 - 2. Weeds, fibrous roots
 - 3. Adapted to live in the desert
 - 4. Exceptions: South American spp., African forest tortoises
 - b. Diet breakdown for lizards
 - i. Herbivores
 - 1. Iguanas
 - 2. Uromastyx
 - 3. Chuckwallas

ii. Omnivores

- 1. Bearded dragons
- 2. Anoles
- 3. Blue-tongue skink
- 4. Veiled chameleons
- 5. Tegus

iii. Insectivores

- 1. Leopard geckos
- 2. Monitors
- 3. Some chameleons
- 4. Frilled dragons

iv. Specialized

- 1. Fruit/nectar feeders
- 2. Crested geckos
- 3. Columbian tegus

c. Almost all snakes are carnivores

- i. Temperate
 - 1. Examples: corn snake, milk snakes, rat snakes, kingsnakes
- ii. Tropical
 - 1. Examples: pythons & boas, snakes from Central & South America
- iii. Specialized diets
 - 1. Insects, amphibians, feeder fish
 - 2. Examples: garter snakes, rainbow boas, ring-neck snakes, hog nose, egg-eating snake

IV. Nutritional strategies

- a. Herbivores
 - i. Vegetable dinner wheel
 - 1. Dandelion greens
 - 2. Romaine lettuce
 - 3. Collard greens
 - 4. Mustard greens
 - 5. Red leaf lettuce
 - 6. Escarole
 - 7. Endive
 - 8. Swiss chard
 - 9. Bok choy

- 10. Kale
- 11. Spinach
- ii. Hay science
 - 1. Alfalfa
 - 2. Botanical hay
 - 3. Oat hay
 - 4. Orchard grass
 - 5. Organic meadow
 - 6. Western timothy
- iii. Grasses
- b. Insectivore
 - i. Insect composition
 - ii. Domestic cricket (*Acheta domesticus*)
 - iii. Mealworm (*Tenebrio molitor*)
 - 1. Mealworm-beetle life cycle
 - iv. Earthworm (Lumbricus terrestris)
 - v. Silkworm (Bombyx mori)
 - vi. Phoenix worm larvae (Hermetia illucens)
 - vii. Madagascar hissing cockroach (*Gromphadorhina portentosa*)
 - viii. Turkistan or red rusty cockroach (Blatta lateralis)
 - ix. Butterworm or tebo worm (Chilecomadia moorei)
 - x. Dubia cockroach (Blaptica dubia)
 - xi. Hornworm (Maduca quinquemaculata)
 - xii. Not readily on the market, but occasionally available
 - 1. False katydid (Microcentrum rhombifolium)
 - 2. Wood louse (Procellio scaber)
- c. Carnivores
- d. Omnivores
- e. Super-specialized
- V. Basic components of nutrition
 - a. Metabolizable energy (ME)
 - Definition: Net energy gained from food after digestion and absorption
 - ii. Standard metabolic rates for daily energy needs at optimal temps= $32 \times BW \times (0.75)$
 - 1. 500-gram reptile requires 9.5-57 kcal/day at 86°F (30°C)

iii. Measurement

- 1. Inverts: 0.7-2.7 kcal ME/g
 - a. Butterworms: 2.977 ME/g
 - b. Cricket: 1.402
 - c. Earthworm: 0.708
 - d. House fly: 0.918
 - e. Mealworm karvaeL 1.378
 - f. Phoenix worms: 1.994
 - g. Red Turkish roach: 0.244
 - h. Superworm larvae: 2.423
 - i. Wax worms: 2.747

iv. Factors that impact ME

- 1. Species
- 2. Age
- 3. Activity
- 4. Environmental temperature
- 5. In reptiles, temperature is not maintained by ME
 - a. Fewer calories needed than mammals
 - b. Digestive efficiency is the same as mammals
- 6. Reptiles Metabolic rate based on metabolic body size

b. Protein

- i. Definition: Amino acid composition and availability
 - 1. Nitrogen availability
- ii. Measurement: g/kg or % DM
- iii. Insect protein sources
 - 1. Exoskeletons contain amino acids
 - 2. Bioavailability may be limited
 - a. Phoenix worms and mountain chicken frogs (Dierenfeld 2008)
 - b. Phoenix worms and leopard geckos (Boykin 2021)

c. Fat

- i. NRC min for rats
 - 1. 5% (50 g/kg) of diet fed (growing)
 - 2. Necessary for fat-soluble vitamins
- ii. Lipid content in feeder inverts: 3-6X higher than rodent diets
- iii. Is fat bad for herps?

- 1. Species dependent: strict herbivores rely on fat more than omnivores
- 2. Activity level

Invertebrates	Crude fat (g/kg)	% fat
Butterworms	294	
Crickets	68	As high as 22.8%
Earthworms	16	12.6%
False katydids		9%
Fruit flies	19	
Hissing cockroach		20.3%
Mealworm larvae	54	As high as 31.1%
Phoenix worms	140	
Red rusty cockroach		14.5%
Silkworms	14	
Superworm larvae	177	As high as 40.1%
Tenebrio beetles		17.7%
Waxworms	249	
Wood louse		11.3%
Zoophobas beetles		14.3%

d. Vitamins

- i. Vitamin A
 - 1. Definition: retinol, beta-carotene, retinyl esters
 - 2. Fat-soluble, light sensitive
 - 3. Measurement (IU/kg)
 - 4. Clinical relevance
 - a. Poor levels in most insects
 - b. Hypovitaminosis A
 - i. A significant and common clinical problem in herptiles
 - ii. Squamous metaplasia
 - 1. Palpebral edema
 - 2. Aural abscess
 - 3. Respiratory epithelium compromise
 - 4. Lingual squamous metaplasia ("short tongue syndrome" in amphibians)
 - 5. Ulcerative chelitis
 - 6. Vision loss

- 7. Growth deficits
- 8. Gastrointestinal bloat
- 9. Dermal ulcerations
- 10. Septicemia
- 11. Acute death
- c. Supplementation with beta carotene is not as effective, must use retinol or retinyl esters
- 5. NRC min retinol for rats: 2300 IU/kg
- 6. Do we know min requirements for herps?
 - a. Box turtles: 3-6 IU/g diet DM
 - b. Aquatic turtles: 2-8 IU/g diet DM
 - c. Chameleons: 5-9 IU/cricket DM
 - d. Foam nesting frogs: 230,000 IU vitamin A/kg of supplement

Invertebrates	IU/kg	ug/kg
Butterworms		<300
Crickets	<1000	
Earthworms	<1000	
False katydids	2953	
Hissing cockroach	182	
House flies		<300
Mealworm larvae	<1000	
Phoenix worms		<300
Red rusty cockroach	120	
Silkworms	1580	
Superworm larvae	<1000	
Tenebrio beetles	12	
Waxworms	<1000	
Wood louse	170	
Zoophobas beetles	41	

ii. Vitamin E

- 1. Definition: antioxidant vitamins, alpha-tocopherol
- 2. Measurement
 - a. mg/kg
 - b. % fat in diet
- 3. Clinical relevancy
 - a. Invertebrates have adequate levels, ranging from 5-166 mg/kg

- b. Steatitis in deficient patients
- 4. NRC rat min 18 mg/kg

iii. Vitamin D3

- 1. Definition
 - a. 25-hydroxycholecalciferol or calcidiol
 - b. Activated by photosynthetic mechanisms (UVB driven) in diurnal and crepuscular herps and people
 - i. Sun >
 - ii. UVB radiation >
 - iii. Vitamin D precursor in the skin >
 - iv. 25-hydroxycholecalciferol
 - v. 1, 25- hydroxycholecalciferol
 - c. Absorbed via intestine
 - d. Calcium absorption and homeostasis
 - e. Serum levels are dependent on MS, renal, integument and GI health
- 2. Measurement: ug/kg or IU/kg
- 3. Production and calcium homeostasis
- 4. Clinical relevance
 - a. Calcium deficiencies across many orders of herptile spp.
 - b. Well studied in diurnal herbivores
- 5. Insectivore supplementation?
 - a. Diurnal or crepuscular
 - i. House gecko (Carmen 2000)
 - ii. Jamaican anole (Ferguson 2005)
 - b. Nocturnal
 - i. Leopard geckos (Mitchell, ARAV 2013)
 - c. Homemade vs oral supplements
 - i. UVB first
 - 1. Level comparable to natural history
 - 2. Even nocturnal spp. can use UVB
 - ii. Supplementation
 - 1. Caution: Inadvertent toxicity can occur
 - 2. Insects "groom" powders off exoskeleton

3. If utilized, do so for 1 week or less

- e. Minerals
 - i. Calcium & phosphorus
 - 1. NRC min for calcium in rats: 3.5-5 g/kg
 - 2. NRC min for phosphorus in rats: 3 g/kg
 - 3. Insects
 - a. Ca: 0.089-9.3 g/kg
 - b. P: 1.5-3.7 g/kg
 - c. Phoenix worms
 - i. 9.3 g/kg
 - d. Wood louse
 - i. 14% calcium DM
 - ii. 11.79 Ca:P ratio
 - e. Digestibility?
- VI. Food prep
 - a. Commercial diets
 - i. Canned/dried prey items
 - ii. Pellets
 - iii. Powder/gel food
 - iv. Advantages
 - 1. Shelf life of products
 - 2. Don't have to handle or care for live prey
 - 3. Consistent nutrition profile
 - v. Challenges
 - 1. Acceptance by reptiles
 - 2. Variable quality/nutritional content
 - b. Care and feeding of prey
 - i. General concepts
 - 1. Do not feed directly from pet store of post-shipment
 - 2. Need appropriate planning
 - ii. Housing examples
 - 1. Containers and containment
 - 2. Stocking density/surface area
 - 3. Substrate/hides
 - 4. Crickets

- a. The development and evaluation of a gut-loading diet for feeder crickets formulated to provide a balanced nutrient source for insectivorous amphibians and reptiles (Attard 2013)
 - i. Ingredients
 - 1. Soybean flour
 - 2. Sweet potato flour
 - 3. Red lentil flour
 - 4. Spirulina
 - 5. Crushed rabbit alfalfa pellets
 - ii. Gut load x 24h
- 5. Beetle larvae
 - a. Similar setups for mealworms and superworms
 - b. Hydration is important
 - c. Breeding is easy
 - d. Can be gut loaded
- 6. Roaches
 - a. Popular
 - i. Death head
 - ii. Lobster
 - iii. Dubias
 - iv. Turkish
 - v. Hissing
 - b. Dubia blaptica
 - i. Cannot climb glass
 - ii. Adults live 1-2 years
 - iii. Breed constantly
 - iv. Quiet, no odor
 - c. Madagascar hissing roaches (*Gromphadorhina portentosa*)
 - i. Large, easy to care for
 - ii. Tropical
 - iii. Can climb glass
 - iv. Adults: 2-3 years
 - v. Juveniles take 3 months to mature
 - d. Butterworms or trevoworms (*Chilecomadia moorei*)
 - i. Chilean carpenter moth invasive species

- ii. Irradiated prior to import to prevent molting
- iii. Store in fridge for weeks
- iv. Gut load 24 hours prior?
- e. Reptiworms, calciworms, and Phoenix worms
 - i. Phoenix worms are the larvae of the black solder fly (*Hermetia illucens*)
 - 1. Well studied, used in aquaculture, poultry, vermiculite
 - 2. Stored in cups at room temp
- f. Hornworms
 - i. Grow rapidly and eat non-stop
 - ii. Feed to insectivores within 7-10 days depending on desired size
 - iii. Large specimens
 - iv. May require cuticle laceration
- g. Silkworms
 - i. Picky eaters: mulberry leaves (vitamin A)
 - ii. Most vendors sell with a food substrate
 - iii. Store at room temperature and feed them within 7-10 days
 - iv. Moisture of feed can promote fungal growth
- h. Earthworms
 - i. Dirt substrate
 - ii. Feed composting scraps
 - iii. Can gut load 24h prior
- 7. Moth and fly larvae
 - a. Drosophila melanogaster
- iii. Prey health is important for insectivore health
 - 1. Well hydrated
 - 2. Well nourished, high-quality diets
 - 3. Infectious disease
- iv. Augmenting nutrition profile (vitamin/mineral)
 - 1. Dusting
 - a. Shake invert in small particle dust prior to feeding
 - b. Imprecise way to guarantee supplementation
 - i. Insects can groom off dust or dust falls off

- 2. Gut loading
 - a. Short-term feeding nutrient dense diet to prey
 - b. Many studies confirm this method works for calcium
- 3. Do both!

VII. "Happy Meal"® menu

- a. Larval insects
 - i. High in fat
 - ii. Deficient in vitamins and minerals
 - iii. Variable protein bioavailability
- b. Adult beetles, earthworms, roaches
 - i. Lower fat
 - ii. Good protein levels (especially earthworms)
- c. Most insects have poor calcium levels
 - i. Increase dietary calcium with supplementation
 - ii. Exception: Phoenix worms have high calcium content
 - iii. Macerate to increase bioavailability
- d. Insect care
 - i. Well hydrated
 - ii. Well nourished
 - iii. Feed calcium-rich diet at least 24h prior (not >9% total calcium)
 - iv. Can be kept or bred at home

	Insect is known For	Human Food Comparison	Staple or Treat?
Domestic Cricket	Low protein, high fat (22.8%)	French Fries	Staple if gut loaded, otherwise a treat
Roaches	Lean protein with variable fat (14 - 50%)	Hamburger to Steaks	Staple
Silkworms	Some vitamin A, lean protein source	Turkey	Staple
Earthworms	Protein, good micronutrient content	Big Mac® + multi- vitamin	Staple
Phoenix Worms	Calcium content high	Tums® tablet	Staple, macerate prior to feeding
Butterworms	High ME and fat content (29% DM)	2 Hotcakes with sausage (25%)	Treat, recovery diet
Mealworm larvae	Fat (31%)	2 McDouble Hamburgers ®	Treats
Superworm Larvae	Fat (40.8%)	Two Sausage Egg & Cheese Biscuits (46%)	Treats
Waxworm larvae	More fat (51.4%)	Butter (53% fat)	Treat
Freeze-Dried or Canned	Variable moisture and high in fat	Doritos® Slim Jim®	Treat, use sparingly

References

Attard L. The development and evaluation of a gut-loading diet for feeder crickets formulated to provide a balanced nutrient source for insectivorous amphibians and reptiles. University of Guelph Thesis. May 9, 2013. Available at http://hdl.handle.net/10214/6653.

Boykin K, Bitter AK, Mitchell MA. Using a commercial gut-loading diet to create a positive calcium to phosphorus ratio in mealworms (*Tenebrio molitor*). Journal of Herpetological Medicine and Surgery. 2021; 31(4):302-306. doi: 10.5818/JHMS-D-21-00027.

Carmen EN, Ferguson GW, Gehrmann WH, Chen TC, Holick MF. Photobiosynthetic opportunity and ability for UV-B generated vitamin D synthesis in free-living house geckos (*Hemidactylus turcicus*) and Texas spiny lizards (*Sceloporus olivaceous*). Copeia. 2000; 2000(1):245-250. Available at https://www.jstor.org/stable/1448257. Accessed March 4, 2024.

Dierenfeld ES, King J. Digestibility and mineral availability of Phoenix worms, *Hermetia illucens*, ingested by mountain chicken frogs, *Leptodactylus fallax*. Journal of Herpetological Medicine and Surgery. 2008; 18 (3/4):100-105.

Donoghue S. Nutrition. In: Mader DR (ed). Reptile Medicine and Surgery, 2nd edition. Saunders Elsevier; St. Louis: 2006. Pp. 251-298.

Ferguson GW, Gehrmann WH, Karsten KB, et al. Ultraviolet exposure and vitamin D synthesis in a sun-dwelling and a shade-dwelling species of Anolis: are there adaptations for lower ultraviolet B and dietary vitamin D3 availability in the shade? Physiol Biochem Zool 2005; 78:193–200.

Finke MD. Complete nutrient content of four species of feeder insects. Zoo Biology. 2012; 32, 27-36. doi: 10.1002/zoo.21012.

Finke MD. Complete nutrient composition of commercially raised invertebrates used as food for insectivores. Zoo Biology. 2002; 21(3):269-285. doi: 10.1002/zoo.10031.

Fleming RH. Nutritional factors affecting poultry bone health. Proc Nutr Soc. 2008 May;67(2):177-83. doi: 10.1017/S0029665108007015. PMID: 18412991.

Oonincx DGAB, Dierenfeld ES. An investigation into the chemical composition of alternative invertebrate prey. Zoo Biol. 2012; 31: 40-54.